RLC直列共振回路の共振各周波数・電圧拡大作用・選択度Qの原理と計算方法についてまとめました。
RLC直列共振回路とは
RLC直列共振回路とは、抵抗(R)、コイル(L)、コンデンサ(C)を直列につないだ回路です。
(実際の回路では、抵抗はコイルの巻線の抵抗分となります)
RLC直列共振回路は、共振状態になると以下の特性をもちます。
– | 共振状態の特性 |
---|---|
1 | 電圧と電流の位相が同じになる。 |
2 | 回路を流れる電流の大きさが最大になる。 |
3 | コイルLとコンデンサCの端子電圧が電源電圧より大きくなる。(電圧拡大作用) |
共振状態は、電源電圧の各周波数が以下の値になるとき発生します。
(1)
なぜこの値になるかは次節で紹介します。
共振角周波数の計算式導出
回路全体のインピーダンスは以下のようになります。
(2)
は定数なので、インピーダンスが最小となる条件は虚数項がになるときです。
インピーダンスが最小となるときの角周波数を共振各周波数といいます。
共振各周波数は次のようにして求まります。
共振状態にあるとき、インピーダンスは最小(虚数項が0)になるので以下の式が成立します。
(3)
よって、各周波数は
(4)
共振電流
共振状態の時には、見かけ上のインピーダンスが抵抗だけになるため電流値が最大になります。
このときの電流を共振電流といいます。
(5)
電源電圧の角周波数が共振角周波数から離れるほど、電流値は小さくなります。
つまり、共振回路は「特定の角周波数をもつ信号だけを通しやすくするフィルタ」の役割を果たします。
共振回路は、無線機やラジオなどの選局にも応用されています。
電圧拡大作用とQ(選択度)
RLC直列共振回路が共振状態になると、電源電圧よりコイルやコンデンサの端子電圧の方が大きくなるという現象が発生します。
これを「電圧拡大作用」といいます。
– | 電圧拡大作用の倍率 |
---|---|
コイルの端子電圧 | 電源電圧の倍 |
コンデンサの端子電圧 | 電源電圧の倍 |
この倍率を共振回路の「Q(選択度)」といいます。
コイルの場合、分母の巻線抵抗が小さく、分子のインダクタンスが大きいほど、選択度Qは大きくります。
(※実際の回路ではインダクタンスを大きくするために巻数を増やせば、巻線分の抵抗も増えます)
証明
共振電流は次のようになります。
(6)
よってコイルやコンデンサの端子電圧は次のようになり、先程の倍率が成立します。
(7)
コメント