【磁界とは】磁力線、磁束、磁束鎖交数、自己インダクタンス、相互インダクタンス【電験3種・理論】

磁界、磁力線、磁束、磁束鎖交数、自己インダクタンス、相互インダクタンスとは?試験対策と計算問題について解説します。

磁力線、磁束、磁束鎖交数、自己インダクタンス、相互インダクタンス

  • 磁力線
    • 磁極の働きを理解するのに考えた仮想的な線。
  • 磁力線の特徴
    • 磁石のN極から出てS極に入る
    • 磁極m[Wb]からは、磁力線(本数はN=mμN=\frac{m}{\mu} 本)が出入りする。ここで、磁極周囲の物質の透磁率はμ[H/m]とする。
    • 磁力線の接線の向きは、その点の磁界の向きを表す。
    • 磁力線の密度は、その点の磁界の強さを表す(磁束密度と間違えないように注意)。
    • 磁力線同士は、互いに反発し合い、交わらない。
  • 磁束φ=BS\varphi =BS[Wb]
    • 垂直断面を貫く磁束線の総本数[Wb]。
    • 垂直断面の面積:S、磁束密度:B
  • 磁束鎖交数Φ=Nφ=LI\Phi = N \varphi = LI[Wb]
    • N巻のコイル全体を貫く磁力線の本数[Wb]
  • 自己インダクタンスL[H]
    • コイルに電流を流した時、コイルに発生する磁束鎖交数 Φ\Phi [Wb]は、電流 II [A]に比例します。この比例定数を自己インダクタンスL[H]といいます。
  • 自己インダクタンス LLNN 巻コイルに電流 II を流すとき、磁束 φ\varphi [Wb]と磁束鎖交数 Φ\Phi [Wb]は次式で計算できます。

Φ=Nφ=LI\Phi=N\varphi=LI

φ=LIN\varphi=\frac{LI}{N}

コイルに電流を流した時、コイルに発生する磁束鎖交数 Φ\Phi [Wb]は、電流 II [A]に比例します。
この比例定数を自己インダクタンスL[H]といいます。

点磁荷のクーロン法則

点磁荷のクーロン法則ですが、考え方は点電荷と同じようなものです。
点電荷QQが点磁荷mm,電界の強さEEが磁界の強さHH、真空の誘電率epsilon0epsilon_0が真空の透磁率μ0\mu_0となります。

真空中で距離rr離れた二つの磁荷mA,mBm_A, m_Bに加わるFFは、真空の透磁率をμ0\mu_0とすると以下の式で計算できます。

F=mAmB4πμ0r2F=\frac{m_Am_B}{4\pi \mu_0 r^2}

磁荷mmから離れた点における磁界の強さHHは以下の式で計算できます。

H=m4πμ0r2H=\frac{m}{4\pi \mu_0 r^2}

磁界中の電子運動

【電験3種 理論 平成30年 問12】で赤字箇所が穴埋め問題として出題されました。

picture 1

  • 図のように、平等磁界の存在する真空かつ無重力の空間に,電子をxx方向に初速度v[m/s] で放出する。
  • 平等磁界はzz方向であり磁束密度の大きさB[T]B[T]をもつとし、電子の質量をm[kg]m[kg]、素電荷の大きさをe[C]e[C]とする。
  • ただし、紙面の裏側から表側への向きをzz方向の正とし、vvは光速に比べて十分小さいとする。
  • このとき、電子の運動は等速円運動となり、時間T=2πmeB[s]T=\frac{2\pi m}{eB}[s]後に元の位置に戻ってくる。
    • (理由)フレミングの左手の法則より、電子に対しては、回転円の中心に向かう力が加わるため。
  • 電子の放出直後の軌跡は破線矢印のaaのようになる。
    • (理由)フレミングの左手の法則より、電流の向きがx-x方向、磁界の向きがzz方向、力の向きはyy方向なので、電子はaa方向に動く。
  • 一方、電子を磁界と平行なzz方向に放出すると、電子の運動は等速直線運動となる。
    • (理由)電子をzz方向に放出すると、電子には一切力が加わらず、等速直線運動になる。

【補足】T=2πmeB[s]T=\frac{2\pi m}{eB}[s]となる理由

  • 電子に加わる電磁力F=evBF=evBと向心力F=mv2rF=\frac{mv^2}{r}は等しいので、

evB=mv2revB=\frac{mv^2}{r}

r=mveBr=\frac{mv}{eB}

の等速円運動となる。よって、電子が元の位置に戻るまでの時間Tは、以下のとおり。

T=2πrv=2πvmveB=2πmeB[s]T=\frac{2\pi r}{v}=\frac{2\pi}{v}\frac{mv}{eB}=\frac{2\pi m}{eB}[s]

【例題1】点磁荷のクーロン法則

【電験3種 理論 平成30年 問3】

長さ2m2mの直線状の棒磁石があり、その両端の磁極は点磁荷とみなすことができ、その強さは、N極が1×104[Wb]1\times 10^{−4}[Wb]、S極が1×104[Wb]−1\times 10^{−4}[Wb]である。
図のように、この棒磁石を点BC間に置いた。このとき、点Aの磁界の大きさ[A/m]を求めよ。

ただし、点A、B、Cは、一辺を2mとする正三角形の各頂点に位置し、真空中にあるものとする。
真空の透磁率はμ0=4π×107[H/m]\mu_0=4\pi \times 10^{-7}[H/m]とする。また、N極、S極の各点磁荷以外の部分から点Aへの影響はないものとする。

picture 1

【解答】

点Bの磁荷1×1041\times 10^{−4}[Wb]による磁界の大きさHBH_Bは以下のとおり。

HB=m4πμ0r2=m4πμ0r21×1044π×4π×107×22=1.58H_B=\frac{m}{4\pi \mu_0 r^2}=\frac{m}{4\pi \mu_0 r^2}\frac{1\times 10^{-4}}{4\pi \times 4\pi \times 10^{-7}\times 2^2}=1.58 [A/m]

となる。また,点Cの磁荷1×1041\times 10^{−4}[Wb]による磁界の大きさHCH_CHBH_Bと同じ大きさとなる。
HB,HCH_B, H_Cが正三角形の辺となっていることから、その合成磁界Hの大きさもH_Bと同じ1.58 [A/m]となる。

【例題2】中空鉄心中の磁束

【電験3種 理論 平成28年 問4】

picture 1

図のように,磁極 N,S の間に中空球体鉄心を置くと, N から S に向かう磁束は,鉄心中を通るようになる。
このとき,球体鉄心の中空部分(内部の空間)の点 A では,磁束密度は極めて小さくなる。これを磁気遮へいという。
ただし,磁極 N,S の間を通る磁束は,中空球体鉄心を置く前と置いた後とで変化しないものとする。

【例題3】単位記号

【電験3種 理論 平成23年 問14】

電気及び磁気に関係する量とその単位記号(他の単位による表し方を含む)との組合せとして,誤っているものを次の(1)~(5)のうちから一つ選べ。

(1)導電率 S/m

→正しい。

(2)電力量 W⋅s

→正しい。

(3)インダクタンス Wb/V

→誤り。$L=\fracN{\phi}{I}$より、[Wb/A]が正しい。

(4)磁束密度 T

→正しい。B=ϕSB=\frac{\phi}{S}より単位が[Wb/m2][Wb/m^2]で表されることもある。

(5)誘電率 F/m   

→正しい(ϵ=CdS\epsilon=\frac{Cd}{S})。 

参考動画

  • 初心者向け電験三種・理論・1・クーロンの法則【超簡単に学ぶ!】第三種電気主任技術者

関連リンク

【電験3種】理論分野の例題・過去問解説と攻略法
電験3種・理論分野の試験対策・問題集についてをまとめました。
電験3種の試験対策・問題解説集
電験3種の試験対策・問題集についてをまとめました。

コメント